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1 Introduction

In this paper, you will learn some of the most notable distributions of functions of random
variables. Distributions are determined by the random variable(s) they describe. There are
many different types of random variables and so there are many different types of distribu-
tions. Functions of random variables enable us to apply transformations such that particular
behaviors of unique phenomena can be modeled.

I will begin by looking at the most common methods used to derive functions of random
variables. This is done to elucidate the origins of distributions introduced thereafter. Using
such methods, I will derive many notable distributions beginning with the simplest case:
discrete univariate distributions. Then, I will introduce continuous univariate distributions
to help transition to the more versatile case of multivariate models. Finally, I will discuss
the case of conditional distributions chained together through interrelated random variables
called hierarchical models.

2 Methods of Deriving Functions of Random Variables

1. Method of Cumulative Density Function (cdf)

2. Method of Transformation

3. Method of Jacobian (aka Change-of-Variables)

2.1 Method of cdf

The cumulative density function is a non-decreasing function that models the probability
that a random variable X is less than or equal to a specified value x. It can be applied to
either discrete or continuous random variables.

Definition 1. Let Y be a continuous random variable with cdf FY (y). Assume injective
transformations.
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Case 1. Let Y = g(x) be a monotonically increasing function. The cdf of Y can be
transformed to the cdf of X in the following way

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g
−1(y))

The pdf is given by

fY (y) = F ′
Y (y) =

d

dy
Fx(g

−1(y)) = fx(g
−1(y))

d

dy
g−1(y)

Case 2. Let Y = g(x) be a monotonically decreasing function. The cdf of Y can be
transformed to the cdf of X in the following way

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≥ g−1(y)) = 1− FX(g
−1(y))

The pdf is given by

fY (y) = F ′
Y (y) = − d

dy
Fx(g

−1(y)) = −fx(g
−1(y))

d

dy
g−1(y)

Example. Let X ∼ Γ(α, β). Find the distribution of Y = aX + b, a > 0.
First, we obtain g−1(y)

Y = aX + b ⇒ g(X) = aX + b ⇒ g−1(y) =
y − b

a

Apply the method of cdf

FY (y) = P (Y ≤ y) = P (aX + b ≤ y) = P (X ≤ y − b

a
) = FX(

y − b

a
)

Differentiate both sides with respect to y to obtain the pdf

fY (y) = fX(
y − b

a
) · 1

a
=

(y−b
a
)α−1e−( y−b

aβ
)

Γ(α)βα
· 1
a
=

(y − b)α−1e
b−y
aβ

Γ(α)(αβ)α

2.2 Method of Transformation

The method of transformation follows directly from the method of cdf.

Definition 2. Let X be a continuous random variable with probability density function
f(x). Assume injective transformations. Let Y = g(x) be a monotonic function; thus,

If u > v ⇒ g(u) > g(v)

If u < v ⇒ g(u) < g(v)

The pdf of Y is given by

fY (y) = fX(g
−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣
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Theorem 1. Let X be a continuous random variable and let Y = g(x).

Case 1. If g(x) is a monotonically increasing function, then FY (y) = FX(g
−1(y))

Case 2. If g(x) is a monotonically decreasing function, then FY (y) = 1− FX(g
−1(y))

Example. Let X ∼ Γ(α, β). Find the distribution of Y = aX + b, a > 0. Recall from the
previous example, g−1(y) = y−b

a
Apply the method of transformation to obtain the pdf

fY (y) = fX(g
−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣ = fX(
y − b

a
)

∣∣∣∣ ddy y − b

a

∣∣∣∣
= fX

(
y − b

a
)
1

a

=
(y−b

a
)α−1e−( y−b

aβ
)

Γ(α)βα

1

a

=
(y − b)α−1e

b−y
aβ

Γ(α)(αβ)α

2.3 Method of Jacobian (aka Change-of-Variables)

The method of Jacobian enables us to derive joint distributions of multivariate random
vectors.

Definition 3. Let X, Y be continuous random variables with joint pdf fXY (x, y). Suppose
U = g1(X, Y ) and V = g1(X, Y ). Assume injective transformations.
We first solve U, V for x, y in terms of u, v to obtain

x = h1(u, v) and y = h2(u, v)

Case 1. We compute the Jacobian J1, defined as the determinant of the matrix of partial
derivatives of g1 and g2 w.r.t x and y.

J1 =

[∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂x

]
=

∂g1
∂x

∂g2
∂y

− ∂g1
∂y

∂g2
∂x

Thus, the pdf is given by

fU,V (u, v) = fX,Y (x = h1, y = h2)|J1|−1

where |J1|−1 is the inverse of the absolute value of the Jacobian matrix.

Case 2. Compute the Jacobian J2, defined as the determinant of the matrix of partial
derivatives of h1 and h2 w.r.t x and y.

J2 =

[
∂h1

∂x
∂h1

∂y
∂h2

∂x
∂h2

∂x

]
=

∂h1

∂x

∂h2

∂y
− ∂h1

∂y

∂h2

∂x
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Thus, the pdf is given by

fU,V (u, v) = fX,Y (x = h1, y = h2)|J2|

where |J1|−1 is the inverse of the absolute value of the Jacobian matrix.

Note, both Case 1 and Case 2 are effective strategies, but one should use mathemati-
cal judgement to determine the less strenuous of the two.

Example. Let X1 and X2 be independent exponential random variables with parameters λ1

and λ2, respectively. Find the joint pdf of U and V , where U = X1 +X2 and V = X1 −X2.
The joint pdf is given by

fX1,X2(x1, x2) = fx1(x1) · fX2(x2) = λ1e
−λ1x1 · λ1e

−λ1x1

Solve for X1 and X2 in terms of U and V

X1 =
U + V

2
X2 =

U − V

2

Compute the Jacobian

J1 =

[ ∂U
∂x1

∂U
∂x2

∂V
∂x1

∂V
∂x2

]
=

[
1 1
1 −1

]
= −2

Finally, the joint pdf of U and V is given by

fU,V (u, v) = fX1,X2(x1 =
u+ v

2
, x2 =

u− v

2
)| − 2|−1

= λ1λ2 ·
1

2
e−λ1

u+v
2 e−λ1

u−v
2

3 Discrete Univariate Models

Discrete univariate models describe models with exactly one discrete random variable. A
variable is said to be discrete if there exists a countable number of values within its mapped
set (range). We use a probability mass function (pmf) to model distributions with discrete
random variables. I will cover the following models:

1. Uniform

2. Bernoulli

3. Binomial

4. Poisson
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3.1 Uniform

Definition 4. X is said to follow a Uniform distribution if

f(x|a, b) = 1

b− a+ 1
for some a, b ∈ Z s.t. b ≥ a

Uniform distributions model events that have a fixed likelihood of occurring within a spec-
ified range. Note, the uniform distribution has a continuous case as well, depending on the
range of values. Some notable applications include: rolling a fair die, flipping a fair coin, or
picking from a deck of cards.

Example. Consider a fair die. Find the probability of rolling a 3.

f(3|1, 6) = 1

6− 1 + 1
=

1

6
= 0.16̄6

3.2 Bernoulli

Definition 5. X is said to follow a Bernoulli distribution if

f(x|p) = P (X = x|p) =

{
p 1

1− p 0
0 ≤ p ≤ 1

Bernoulli distributions model singular events that have exactly two possible outcomes. Some
notable applications include: a weighted coin toss, the success or failure of a drug, or a free
throw in basketball.

Example. Consider a weighted coin. The probability of heads is 65% (p = 0.65). Let
X = 1 represent heads and X = 0 represent tails.

f(x|p = 0.65) = P (X = x|p = 0.65) =

{
0.65 1

0.35 0

Therefore, the probability of flipping heads P (X = 1|p = 0.65) = 0.65.

3.3 Binomial

Definition 6. X is said to follow a binomial distribution if

f(x|n, p) = P (X = x|n, p) =
(
n

x

)
px(1−p)n−x, x = 0, 1, ..., n for some n ∈ Z and 0 ≤ p ≤ 1

Binomial distributions model successive independent Bernoulli events (trials). Some notable
applications include: flipping a coin multiple times, winning a sports tournament, or taking
a multiple choice test.
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Example. Consider a 10 question test. Each question has 4 choices with only 1 cor-
rect answer. Each choice is equally likely to occur. If you randomly guess on each question,
find the probability of answering 8 questions correctly.

f(8|10, 0.25) =
(
10

8

)
0.258(1− 0.25)10−8 = 0.024

Therefore, the likelihood of answering 8 questions correctly at random is 2.4%.

3.4 Poisson

Definition 7. X is said to follow a Poisson distribution if

f(x|λ) = P (X = x|λ) = e−λλx

x!
, x = 0, 1, ... ; 0 ≤ λ < ∞

Poisson distributions model the frequency of independent events that occur within a speci-
fied time and/or space interval given a constant frequency rate. Some notable applications
include: the number of calls arriving at a call center in an hour, the number of cars driving
on a highway in a day, the number of customers entering a restaurant in a week, and the
number of goals scored in a game.

Example. On average, 8 cars enter a highway every 60 minutes. Find the probability
that 5 cars enter the highway in the next 60 minutes.

f(5|8) = e−885

5!
= 0.0916

Therefore, the likelihood that 8 cars will enter the highway in the next 60 minutes is 9.16%.

4 Continuous Univariate Models

Continuous univariate models describe models with exactly one continuous random variable.
A variable is said to be continuous if there exists an uncountably infinite number of val-
ues within its mapped set (range). We use a probability density function (pdf) to model
distributions with continuous random variables. I will cover the following models:

1. Exponential

2. Gamma

3. Normal (aka Gaussian)

4. Beta

5. Chi squared

6. Student’s t

7. F (aka Variance-Ratio)
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4.1 Exponential

Definition 8. X is said to follow an Exponential distribution if

f(x|λ) = 1

λ
e−

x
λ , 0 ≤ x < ∞, λ > 0

Exponential distributions follow directly from Poisson distributions, modeling the time it
takes for a Poisson event to occur or, equivalently, the time between independent successive
Poisson events. The exponential distribution is able to model such phenomena given only
the average rate at which the event occurs (λ). It is a monotonically decreasing function
and so it is most suitable for phenomena that decay at a decreasing rate. Some notable
applications include: radioactive decay, time between bus stop arrivals, time between calls
at a call center, or time between customer arrivals at a store.

Example. Consider a bus stop where, on average, a bus arrives every 15 minutes. Find the
probability a bus will take longer than 15 minutes once a previous bus departs.

First, we obtain the pdf λ = 15.

f(x|λ = 15) =
1

15
e−

x
15

Then, we integrate with respect to x to obtain the cdf.

F (X > 15) = 1− F (X < 15)

= 1−
∫ 15

0

1

15
e−

x
15dx

= 1−
(
−e−

x
15

) ∣∣∣∣15
0

= 1− (−e−1 + e0)

= 0.3678

Therefore, the likelihood of waiting longer than 15 minutes for the next bus is 36.78%.

Theorem 2. Let X ∼ exp(λ). Then,
∑n

i=1Xi ∼ Γ(n, λ)
The sum of n exponential distributions with rate λ follows a gamma distribution with shape
parameter n and rate λ

4.2 Gamma

Definition 9. X is said to follow a Gamma distribution if

f(x|α, β) = xα−1e−
x
β

Γ(α)βα
, 0 ≤ x < ∞, α > 0, β > 0
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The gamma distribution follows from the exponential distribution, modeling the time it
takes for n successive independent Poisson events to occur. The gamma distribution is for
the exponential what the binomial distribution is for the Bernoulli. Gamma distributions
model events that hold strictly non-negative values given a shape parameter (α) and scale
parameter (β). Because of these parameters, the gamma distribution provides a flexible fit to
model positive, right-skewed phenomena. In particular, gamma is most suitable in modeling
events that have extreme initial excitement and then calm down as time increases. Some
notable applications include: social media posts, wait times in a queue, survival analysis,
rainfall, and investment returns.

Example. A battery factory manufactures batteries that follow a gamma distribution with
shape parameter α = 3 and β = 25 hours. Find the probability that a battery lasts less than
20 hours.

First, we obtain the pdf.

f(X < 20|α = 3, β = 25) =
x3−1e−

x
25

Γ(3)253

Then, we integrate with respect to x to obtain the cumulative density function (cdf).

F (X < 20) =

∫ 20

0

x3−1e−
x
25

Γ(3)253
dx

=
1

2 · 253

∫ 20

0

x2e−
x
25dx = 0.0474 Γ(1) = Γ(2) = 1

Therefore, the likelihood of a battery lasting less than 20 hours is 4.74%.

Theorem 3. Γ(α, β) ∼ N(αβ, αβ2) as α → ∞

Theorem 4. χ2
p ∼ Γ(p

2
, 2)

The χ2 distribution with p degrees of freedom is a special case of the Gamma distribution
with α = p

2
and β = 2.

f(x|α =
p

2
, β = 2) =

x
p
2
−1e−

x
2

Γ(p
2
)2

p
2

Theorem 5. Γ(1, β) = exp(β)
The exponential distribution is a special case of the Gamma distribution with α = 1.

f(x|α = 1, β) =
x1−1e−

x
β

Γ(1)β1
=

1

β
e−

x
β

Theorem 6. Γ(1
2
) =

√
π
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Proof: Let Z ∼ N(0, 1). Then, the pdf is

f(z) =
1√
2π

e−
1
2
z2

We take the integral with respect to z to obtain the cdf. Rewrite using the property of
symmetry. ∫ ∞

−∞

1√
2π

e−
1
2
z2dz = 2

∫ ∞

0

1√
2π

e−
1
2
z2dz = 1

Let y = 1
2
z2 ⇒ z = (2y)−

1
2 and dy

dz
= z ⇒ dz = z−1dy

Substituting,

2

∫ ∞

0

1√
2π

e−yz−1dy =
2√
2π

∫ ∞

0

e−yz−1dy

=
2√
2π

∫ ∞

0

e−y(2y)−
1
2dy

=

∫ ∞

0

e−yy−
1
2dy

=

∫ ∞

0

e−yy
1
2
−1dy =

√
π

= Γ(
1

2
) =

√
π □

4.3 Normal (aka Gaussian)

Definition 10. X is said to follow a Normal distribution if

f(x|µ, σ) = 1

σ
√
2π

e−
(x−µ)2

2σ2 , −∞ < x < ∞, −∞ < µ < ∞, σ > 0

Note, if X ∼ N(0, 1), then the distribution is referred to as the standard normal distribution.

Normal distributions model the probability of an event occurring given the mean and vari-
ance of the population to which the event belongs. Notably, the Central Limit Theorem
states that the distribution of the means of large samples repeatedly taken (independently
and with replacement) from any population with any underlying distribution will approx-
imate a normal distribution. Because of this fundamental principal in statistics, it is one
of the most commonly used distributions and has many useful applications. Among them
include: human height/weight/age/blood pressure, test scores, and seasonal temperatures.

Example. The average grade in a math class is 81% with a standard deviation of 5 per-
centage points. What is the probability a student earned 84% or above in the class?

We are asked to find P (X ≥ 84|µ = 81, σ = 5). First, we standardize the value of in-
terest to calculate the Z-score.

Z =
X − µ

σ
=

84− 81

5
= 0.6
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Now that we have standardized, we need to find P (z ≥ 0.6) = 1 − P (z < 0.6). We consult
a Z-score table or use statistical software to obtain the following value: P (z ≥ 0.6) =
1 − 0.7257 = 0.2742. Therefore, the likelihood of a student earning 84% or above in the
math class is 27.42%.

4.4 Beta

Definition 11. X is said to follow a Beta distribution if

f(x|α, β) = xα−1(1− x)β−1

β(α, β)
, 0 ≤ x ≤ 1, α > 0, β > 0

where β(α, β) = Γ(α)Γ(β)
Γ(α+β)

Beta distributions model the probability of an event’s success (x), specifying the number of
desired successes (α) and number of failures (β). This is similar to the binomial distribution,
which models the number of an event’s successes. Mathematically, one can see the similar-
ities between the beta and binomial distributions through inspection of the numerator of
their respective pdfs. Notice, the beta pdf is scaled by the term 1

β(α,β)
to bound the range

such that values are between 0 and 1; this is necessary because of the fundamental principals
of probability. The beta distribution offers a flexible fit for modeling probabilities and so
provides versatile suitability. Some notable applications include: advertisement click rates,
social media interaction rates, defective product likelihood, and medical treatment efficacy.

Example. Consider a medical treatment clinical trial. The treatment is a new drug and we
want to find the probability that it has a success rate above 50%. A total of 500 people have
already received the drug treatment, 255 of which experienced success. If 800 new patients
are prescribed this treatment, find the probability of at least half of them experiencing suc-
cess.

Note, prior knowledge informs us that the treatment has a 255
500

= 0.51 success rate. We
want to find the likelihood of having at least a 400

800
= 0.5 success rate for the next round of

trails.

First, we obtain the pdf.

f(x > 0.5|α = 255, β = 245) =
x255−1(1− x)245−1

β(255, 245)
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Then, we integrate to obtain the cdf.

F (x > 0.5) = 1− F (x < 0.5) = 1−
∫ 0.5

0

x254(1− x)244

β(255, 245)
dx

= 1− 1

β(255, 245)

∫ 0.5

0

x254(1− x)244dx

= 1− Γ(500)

Γ(255)Γ(245)

∫ 0.5

0

x254(1− x)244dx

= 1− 499!

254!244!

∫ 0.5

0

x254(1− x)244dx

= 1− 0.3272

= 0.6727

Therefore, the likelihood of the drug treatment succeeding for at least half of the patients to
which it is prescribed is 67.27%.

Theorem 7. f(x|α = 1, β = 1) ∼ Unif(0, 1)

Proof:

f(x|α = 1, β = 1) =
x1−1(1− x)1−1

β(1, 1)
=

1

β(1, 1)

=
Γ(1 + 1)

Γ(1)Γ(1)
= 1

4.5 Chi-square

Definition 12. X is said to follow an Chi-square distribution if

f(x|p) = x
p
2
−1e−

x
2

Γ(p
2
)2

p
2

, 0 ≤ x < ∞, p = 1, 2, ...

Chi-square distributions model events that follow the sum of squared normal distributions.
Because it models squared values, the chi-square distribution is suitable for modeling non-
negative phenomena. Furthermore, since it inherits from the normal distribution, chi-square
is particularly useful as a stress test to determine underlying properties of observed data
such as independence and goodness-of-fit. Some notable applications include: testing rela-
tionships between categorical variables (test of independence), testing how well the observed
data fits the expected data (goodness-of-fit test), and testing distributions across different
populations (homogeneity test).

Example. We want to determine if a relationship exists between education level and po-
litical party association. We survey 500 people and collect data in a frequency table shown
below.
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High School College Graduate Total
Republican 54 32 12 98
Democrat 87 46 20 153
Independent 20 23 19 62
Total 161 101 51 313

First, we specify our null hypothesis Ho and alternative hypothesis Ha:
Ho : there exists no relationship between education level and political party association.
Ha : there exists an relationship between education level and political party association.
We also need to decide on a confidence level: α = 0.05.

Then, we calculate the expected frequencies to compare our observed data to what the
data ”should” be, calculated as the ratio between elements and their respective row/column
totals. We place this in a frequency table shown below.

High School College Graduate
Republican 50.41 31.62 6.26
Democrat 42.5 22.5 9.77
Independent 3.96 4.56 3.76

Next, we compute the χ2 test statistic defined and calculated as

χ2 =
3∑

i=1

3∑
j=1

(Oij − Eij)
2

Eij

= 16.05

where Oij represents the observed values and Eij represents the expected values.

Now, we need to calculate the critical value, defined as the degrees of freedom and cal-
culated with the row number R and column number C as follows:

df = (R− 1)(C − 1) = (3− 1)(3− 1) = 4

Finally, because χ2 = 16.05 > 4, we reject Ho with a 95% confidence level. Therefore,
there is a statistically significant amount of evidence supporting the claim that there is a
relationship between education level and political party.

Theorem 8. Chi-square with 1 degree of freedom (df) is equivalent to the square of a
standard normal distribution. Mathematically,

∃Z ∼ N(0, 1) s.t Z2 ∼ X2
1

Theorem 9. Chi-square approximates normal if df > 90.

χ2
n ≈ N(µ, σ) as n → ∞
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4.6 Student’s t

Definition 13. T is said to follow a t distribution with p degrees of freedom if

f(T |p) =
Γ(p+1

2
)

Γ(p
2
)

1
√
pπ

1

(1 + ( t
2

p
))

p+1
2

−∞ < t < ∞; p = 1, 2, ...

Student’s t distributions model the comparison of two population means. It is a popular
tool to approximate normal distributions when sample size is small and/or a population’s
variance is unknown, as it is often the case that a population’s variance is unknown. The t
distribution is similar in shape to a Gaussian bell curve, but with larger tails. Some notable
applications include: comparing the efficacy of a treatment group to a placebo group in a
medical trial, comparing one production line to another in a manufacturing factory, and
comparing one class to another in a school.

Example. Consider 30 plants of the same species. Half of the plants are kept inside
while the other half are kept outside. After one month, the outside plants have grown an
average of 2 inches with a standard deviation of 0.5 inches, the inside plants have grown an
average of 1.8 inch with a standard deviation of 0.6 inches. Determine if there is a statisti-
cally significant difference in plant growth between the two groups. This exercise is left for
the reader.

Theorem 10. Tp ∼ N(0, 1) as p → ∞

4.7 F (aka Variance-Ratio)

Definition 14. Consider two independent chi-square distributions, χ2
p and χ2

q, where p, q
are the degrees of freedom, respectively. X is said to follow a F distribution if

f(x|p, q) =
(
χ2
p

p
)

(
χ2
q

q
)

The pdf is expressed as,

f(x|p, q) =
Γ(p+q

2
)

Γ(p
2
)Γ( q

2
)

(
p

q

)p/2
x

p−2
2

(1 + x(p
q
))

p+q
2

; 0 ≤ x < ∞; p, q = 1, 2, ...

F distributions model the ratio of variances between two independent and normally dis-
tributed populations. Because of this, it inherits many properties from the chi-square distri-
bution such as right skew and non-negativity. The suitability of the F distribution is similar
to that of the T distribution with subtle differences. The T distribution tests the difference
in means between exactly two populations whereas the F distribution tests the difference
in variances between two or more populations. Some notable applications include: testing
equality of variances between two or more populations in an ANOVA test, and testing the
power of a model in regression analysis which gauges it’s significance.
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Example. A chef wants to perfect her apple pie recipe. She baked 10 pies each for recipes
A, B, and C, making a total of 30 pies. She cuts them into eighths and hands 1 slice each to
240 customers (at random) for them taste and rate their pie on a scale from 1-5 (5 being the
most satisfied). On average, customers rated recipe A with a score of 3.2, recipe B with a
score of 4.6, and recipe C with a score of 4.1. Determine if there exists statistically significant
differences in customer satisfaction between the 3 different recipes. This exercise is left for
the reader.

Theorem 11. F1,q = T 2
p

Proof: The T test statistic is defined as

T =
Z√
W
q

for some Z ∼ N(0, 1) and W ∼ χ2
q

Substituting, we obtain

T =
Z√
χ2
q

q

Thus it follows

T 2 =
Z2(
χ2
q

q

) =

(
χ2
1

1

)
(

χ2
q

q

) ∼ F1,q (Theorem 7)

5 Multivariate Models

Multivariate models describe models with more than one random variable. From this, it is
necessary to express the response variables as a random vector. Such models are helpful
in modeling the more complex world. Realistically, most phenomena have more than one
variable so multivariate models are more suitable for our natural environment compared to
their univariate counterpart.

5.1 Joint Distributions

Joint distributions model the combination of two or more variables. They are used to
describe the probability of multiple independent events as they occur simultaneously. Joint
distributions completely describe multivariate models. Similar to univariate models, joint
distributions can be expressed as a joint pmf or joint pdf depending on the continuity of the
random variables they describe. We consider both cases below.
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5.1.1 Discrete

Definition 15. (X1, ..., Xn) have a joint probability mass function expressed as

f(X1, ..., Xn) = P (X1 = x1, ..., Xn = xn) =
∑
X1

...
∑
Xn

f(x1, ..., xn) = 1

Example. Consider a fair coin and die. We want to model the joint distribution of flipping
the coin and rolling the die simultaneously. Note, the coin flip is independent of the die
roll. Because both variables have a discrete range, we will describe their joint distribution
with a probability mass function. Write the joint pmf and use it to find the likelihood of
simultaneously rolling a 4 and flipping a heads after one trial.

Let random variables D and C describe the probability of the desired outcome of the die
and coin, respectively. Because of independence, we know the joint pmf, denoted f(D,C),
is equal to the product of their marginal distributions. Mathematically,

f(D,C) = f(D) · f(C) for some, f(D) ∼ Bernoulli(p = 1/6)

f(C) ∼ Bernoulli(p = 1/2)

It follows,

f(D = d, C = c) = f(D = d) · f(C = c)

= f(D = 4) · f(C = Heads)

= (1/6)(1/2)

= 2/3 = 0.333

Therefore, the likelihood of simultaneously flipping a heads and rolling a 4 is 33.33%.

5.1.2 Continuous

Definition 16. (X1, ..., Xn) have a joint probability density function expressed as

f(X1, ..., Xn) = P (X1 = x1, ..., Xn = xn) =

∫
X1

...

∫
Xn

f(x1, ..., xn)dx1...dxn = 1

Example. We want to model the likelihood of someone’s height H (in inches) and weight
W (in pounds). Let H and W be jointly continuous random variables with joint pdf:

f(H,W ) = P (H = h|W = w) =
w

990h2

where, 30 < w < 300, 30 < h < 90
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Find f(H < 60,W < 130)

f(H < 60,W < 130) =

∫
H

∫
W

f(H < 60,W < 130) dwdh

=
1

990

∫ 60

30

∫ 130

30

w

h2
dwdh

=
1

990

∫ 60

30

[
w2

2h2

]130
30

dh

=
1

990

∫ 60

30

1302 − 302

2h2
dh

=
1

990

[
−8000

h

]60
30

=
1

990

[
−8000

60
+

8000

30

]
= 0.1346

Therefore, the likelihood of someone weighing between 30 and 130 pounds while also having
a height between 30 and 60 inches is 13.46%.

5.2 Marginal Distributions

Marginal distributions allow us to focus on one particular variable taken from a joint dis-
tribution where each individual random variable has a univariate distribution. A note of
caution, marginal distributions do not necessarily completely describe multivariate models;
thus, we are not necessarily able to determine a joint distribution from the sum of marginals.
Conversely, we are and, in fact, must determine marginal distributions from their associated
joint distributions.

5.2.1 Discrete

Definition 17. Let (X1, ..., Xn) be a discrete random vector with joint pmf expressed as
f(X1, ..., Xn). Xi has a marginal pmf denoted

f(Xi) = P (Xi = xi) =
∑

...
∑

f(x1, ..., xi−1, xi+1, ..., xn)

5.2.2 Continuous

Definition 18. Let (X1, ..., Xn) be a continuous random vector with joint pdf expressed as
f(X1, ..., Xn). Xi has a marginal pdf denoted

f(Xi) = P (Xi = xi) =

∫ ∞

−∞
...

∫ ∞

−∞
f(x1, ..., xi−1, xi+1, ..., xn)dx1...dxi−1dxi+1dxn
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Example. We will use the previous example introduced in subsection 4.2.1. The marginal
distributions, denoted fH(h) and fW (w), are as follows

fH(h) =

∫ 130

30

f(h,w) dw =

∫ 130

30

(w/h2) dw =
8000

h2

fW (w) =

∫ 60

30

f(h,w) dh =

∫ 60

30

(w/h2) dh =
w

60

6 Mixture Distributions

Mixture distributions engender from multivariate models that deal with different types of
distributions. Until now, we have dealt solely with random vectors wherein all the variables
follow the same distribution. Realistically, this is not always the case.

Example. Consider the random vector [X, Y, Z], where X|Y follows a binomial distribution,
Y |Z follows an Poisson distribution, and Z follows a gamma distribution. This is a model
involving a mixture of different distributions chained together through conditional relation-
ships, called a hierarchical model. We say hierarchical models lead to mixture distributions.
This can be written mathematically as follows,

X|Y ∼ binom(n, p)

Y |Z ∼ Poisson(Z)

Z ∼ gamma(α, β)

7 Afterword

This is not a complete guide to distributions of functions of random variables. Notable distri-
butions left out include: negative binomial, cauchy, double exponential, logistic, lognormal,
pareto, and weibull. Furthermore, some proofs and exercises were proposed and left unsolved.
The diligent reader will engage in distributions, proofs, and exercises of personal significance.

Lecture notes from Prof. Nicolas Christou’s Mathematical Statistics course (UCLA STATS
404) were referenced throughout the writing of this paper along with ”Statistical Inference”
by Casella and Berger.
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